A model is proposed for the development of the Quaternary palustrine carbonate–calcrete association, which occurs as hard crust capping low hills at a distal flood plain of Al Dibdibba alluvial fan located at southwestern Kuwait. Field occurrence, detailed petrographic investigation and geochemical analysis revealed that a single cycle of groundwater calcrete with vertical gradational maturity pattern was developed. This represents a continuous sedimentological cycle during which flood sheet conditions prevailed with intermittent periods of humid and arid conditions. Subsequently, calcitic micrite was continuously precipitated from small, shallow, local, isolated and short lived ponds fringed by freshwater marshes with abundant charophyte meadows. The latter were developed as a result of flooding scattered depressions by groundwater supersaturated with respect to calcite due to rise of groundwater table. The deposition of two facies of carbonate muds, namely; biomicrite and pelintraclasts skeletal micrites was followed by a drought phase which witnessed desiccation of the fresh water ponds and significant drop in groundwater level. A sequence of pedogenic and diagenetic processes acted on the deposited carbonate muds are manifested by: (a) desiccation cracks, (b) micrite neomorphism, (c) infilling of root burrows and some cracks by aeolian siliciclastics, (d) karstification, (e) marmorization, (f) calcretization of root burrow infill and development of pseudo-rhizocrete, (g) calcite cementation and mineral authigenesis, and (h) silcretization. These processes are responsible for the development of hard palustrine carbonate crust. At the advent of aridity, the whole system of Al Dibdibba alluvial fan was subjected to deflation. This resulted in reversing the paleotopography of the hard crusted palustrine depressions into carbonate capped domal hills.