In this paper, a verification is presented of a simplified analytical method for the predictions from numerical simulations of structural performance during ship groundings over seabed obstacles with large contact surfaces and trapezoidal cross-section. This simplified analytical method was developed by Lin Hong and Jørgen Amdahl and calculates grounding characteristics, such as resistance and distortion energy, for double-bottomed ships in shoal grounding accidents. Two finite-element models are presented. One was built for a hold, and the other was built for a hold and a ship hull girder and also considers sectional properties, ship mass, added mass and the hydrodynamic restoring force. The verification was completed by comparing horizontal and vertical resistances and the distortion energy between seven numerical-simulation cases and a set of corresponding cases computed by a simplified analytical method. The results show that the resistances obtained by the simplified analytical method are close to the mean values of the resistance curves obtained by numerical simulations. The comparisons prove that the energy dissipation-prediction capability of the simplified analytical method is valuable. Thus, the simplified analytical method is feasible for assessing ship groundings over seabed obstacles with large contact surfaces and trapezoidal cross-section. Furthermore, studies of the influence of ship motion during groundings ascertained that ship motion affects structural performance characteristics. Resistances are lessened at the end of the grounding due to the reduction of indentations caused by heave and pitch motions of the ship hull girder. Finally, a new method for predicting the structural performance of the time-consuming complete-ship model by applying a combination of normal numerical simulations and ship-motion calculations is proposed and proven.
Read full abstract