Purpose This paper aims to solve the problem of uncertain position and attitude between unstructured terrain robot and grasped target and insufficient control accuracy in extreme environment, a grasping mechanism based on attraction domain relationship is proposed, which can realize autonomous positioning, capturing and grasping of robot under low control accuracy. Design/methodology/approach The grasping mechanism was designed, taking inspiration from fishing behavior this mechanism introduces attraction domains and flexible-elastic structures through the active and passive ends to achieve automatic positioning and capture. After the capture is completed, the grasping mechanism connects the active end and the passive end, simultaneously relying on the gravity of the target object to achieve locking and release between the robot and the target object. This paper adopts theoretical, simulation and experimental verification methods to conduct theoretical and simulation analysis on the autonomous positioning and grasping process of the mechanism, and produces grasping experimental prototypes with different positions and postures. Findings The experiment shows that the gripping mechanism designed in this paper can achieve automatic positioning capture and gripping of large deviation situations under low control accuracy, with a displacement deviation of up to 10 mm (about 1/6 diameter of the end of the mechanism) and an angle deviation of up to 3°. The scientific research task in the extremely high altitude environment has finally been successfully accomplished. Originality/value Inspired by fishing behavior, this paper proposes a positioning, capturing and grasping mechanism. The attraction area built with permanent magnets, coupled with the flexible connection, enables precise capture under low control, while the grasping mechanism can also rely on gravity to self-lock and release.
Read full abstract