The purpose of this study was to validate the use of a model-based dose calculation algorithm (MBDCA), Acuros BV, for high dose rate brachytherapy treatment planning for a community-based hospital with a Bravos afterloader. Based on published AAPM recommendations, this work details a practical approach for community-based clinics to complete initial validation of Acuros BV, in order to add a MBDCA to a TG-43 based brachytherapy treatment planning program. Source dimensions and materials used in Acuros BV and TG-43 source models were compared to the physical source. TG-186 testing was completed with standardized test cases externally calculated with Monte Carlo compared to locally calculated with Acuros BV. Point doses calculated using TG-43 were compared to those calculated with Acuros BV in water at various dose grid settings. Secondary dose check software was used to evaluate dose distributions resembling clinical patient plans, both in water and on CT datasets representative of patient anatomy. The major source of discrepancy of source models was the length of modeled steel cable. TG-186 testing showed that the largest differences between Monte Carlo and Acuros BV dose distributions were located along the source axis for cases calculated in water, as well as located in regions of high dose gradients and within the applicator for the case calculated with a generic shielded applicator. An audit of point doses calculated with both TG-43 and Acuros BV in water found that dose grid settings significantly affected agreement. Secondary dose check software indicated that Acuros BV functioned satisfactorily, and a 5% threshold was adopted for secondary dose checks on gynecologic plans. This validation process indicated that Acuros BV met expected standards and affirmed its suitability for integration into this clinical practice's brachytherapy treatment planning.