Abstract

PurposeTo compare dosimetry for head and neck cancer patients, calculated with TG-43 formalism and a commercially available grid-based Boltzmann solver.Material and methodsThis study included 3D-dosimetry of 49 consecutive brachytherapy head and neck cancer patients, computed by a grid-based Boltzmann solver that takes into account tissue inhomogeneities as well as TG-43 formalism. 3D-treatment planning was carried out by using computed tomography.ResultsDosimetric indices D90 and V100 for target volume were about 3% lower (median value) for the grid-based Boltzmann solver relative to TG-43-based computation (p < 0.01). The V150 dose parameter showed 1.6% increase from grid-based Boltzmann solver to TG-43 (p < 0.01).ConclusionsDose differences between results of a grid-based Boltzmann solver and TG-43 formalism for high-dose-rate head and neck brachytherapy patients to the target volume were found. Distinctions in D90 of CTV were low (2.63 Gy for grid-based Boltzmann solver vs. 2.71 Gy TG-43 in mean). In our clinical practice, prescription doses remain unchanged for high-dose-rate head and neck brachytherapy for the time being.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.