BackgroundTo explore the ability of three-dimensional texture analyses based on gray-level run-length matrix (GLRLM) for examining the spatial distribution of pixel values on magnetic resonance imaging (MRI) relaxation time maps and detecting the compositional variation of cartilage repair following treatment with allogeneic human adipose-derived mesenchymal progenitor cells (haMPCs). MethodsParticipants with knee osteoarthritis were randomly divided into three groups with intra-articular haMPCs injections: low-, medium-, and high-dose groups. We analyzed five GLRLM parameters in the T1rho, T2 and T2star maps, including run length non-uniformity (RLNonUni), gray-level non-uniformity (GLevNonU), long run emphasis (LngREmph), short run emphasis (ShrtREmp), and fraction of images in runs. We used the relative D values (the ratio of difference values to baseline) as the objective to avoid errors caused by individual differences. We calculated the two-tailed Pearson's linear correlation coefficient (r) to investigate the correlations of the texture parameters with the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores. ResultsCompared with the base time, significant reduction of WOMAC score was observed in both high and medium doses groups at terminal time, indicating relief of pain symptoms in high and medium groups with the treatment of allogeneic haMPCs. Significant differences were observed in the GLRLM parameters of cartilage MR relaxation time maps in different doses groups. In both T1rho and T2 relaxation time maps, the high-dose group showed significant increases in relative D values of RLNonUni, GLevNonU, LngREmph and ShrtREmp, which indicated significant changes in the uniformity of relaxation time maps. For T2star map, GLRLM parameters such as GLevNonU and ShrtREmp, especially LngREmph, showed significant increases in relative D values in high-dose group. Among all GLRLM features, LngREmph of three relaxation time maps had performed excellent linear correlations with WOMAC scores. ConclusionsTexture analysis of the cartilage may allow the detection of compositional variation in cartilage repair with the treatment of allogeneic haMPCs. This technique displays potential applications in understanding the mechanism of stem cell repair of the cartilage and assessing the treatment response.