A steady-state calorimetric technique was developed for measuring the total hemispherical emissivity of a conductive material. The system uses a thin strip of the conductive sample electrically heated by alternating current to high temperatures in a vacuum chamber. The emissivity was measured in a central region of the sample with an approximately uniform temperature distribution. Considering the influences of the gray body assumption, wire heat losses, effects of residual gas and conductive heat loss from the region to the rest of the strip, the emissivity was accurately determined by solving the inverse one-dimension steady-state heat transfer problem. The emissivities of various metal samples (nickel and 45# steel) were measured to verify the system accuracy. And the results were then analyzed to estimate the relative errors of emissivity arising from the gray body assumption, wire heat losses, effects of residual gas, non-uniform temperature distribution and the measurement uncertainty of emissivity. In the temperature range from 700 to 1300 K, the accuracy is acceptable for practical applications within the total measurement uncertainties of 1.1%. To increase the system applicability, some issues related to sample specifications, heating power control and temperature uniformity of sample test section were discussed. Thus, this system can provide accurate measurements of the total hemispherical emissivity of conductive samples at high temperatures.
Read full abstract