Understanding the phenology of urban trees can help mitigate the heat island effect by strategically planting and managing trees to provide shade, reduce energy consumption, and improve urban microclimates. In this study, we carried out the first evaluation of high spatial resolution satellite images from Landsat-8, Sentinel-2, and PlanetScope images to quantify urban street tree phenology in downtown Beijing. The major research goals are to evaluate the consistency in pixel-level spring–summer growth period phenology and to investigate the capacity of high-resolution satellite observations to distinguish phenological transition dates of urban street trees. At the city scale, Landsat-8, Sentinel-2, and PlanetScope show similar temporal NDVI trends in general. The pixel-level analysis reveals that green-up date consistency is higher in areas with medium (NDVI > 0.5) to high (NDVI > 0.7) vegetation cover when the impacts of urban surfaces on vegetation reflectance are excluded. Similarly, maturity date consistency significantly increases in densely vegetated pixels with NDVI greater than 0.7. At the street scale, this study emphasizes the efficacy of NDVI time series derived from PlanetScope in quantifying the phenology of common street tree genera, including Poplars (Populus), Ginkgos (Ginkgo), Chinese Scholars (Styphnolobium), and Willows (Salix), in downtown Beijing to improve urban vegetation planning. Based on PlanetScope observations, we found that the four street tree genera have unique phenological patterns. Interestingly, we found that the trees along many major streets, where Chinese Scholars are the major tree genus, have later green-up dates than other areas in downtown Beijing. In conclusion, the three satellite observation datasets prove to be effective in monitoring street tree phenology during the spring–summer growth period in Beijing. PlanetScope is effective in monitoring tree phenology at the street scale; however, Landsat-8 may be affected by the mixture of land covers due to its relatively coarse spatial resolution.
Read full abstract