Temperature is among the key factors impacting the establishment and spread of invasive pests. The tomato leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the major pests attacking Solanaceae plants and is known to possess overwintering capacities. However, the cold hardiness of T. absoluta pupae is poorly documented. In this study, we investigated the effect of constant temperature and stepwise cooling on T. absoluta pupae under laboratory conditions. For this purpose, bioassays on pupal development under constant temperature (5°C) for 30, 60 and 90 days, and stepwise changes in temperature (11, 10 and 8°C; in this order every 30 days), were assessed. We found that exposure to 5°C for 30 and 60 days did not affect the post-cooling emergence time of adults compared to the control. Pupae completed their development after 60 days of cold exposure at 5°C, but more adults emerged after 30 than 60 days. Even though alive pupae were observed after 90 days of cold exposure at 5°C, no adults emerged. External colours of pupae depended on the duration of cold periods, and green pupae obtained after 30 and 60 days were found to be positively correlated with the emergence of adults. When pupae were kept at 11°C for 30 days, 47% emerged, and when the temperature was changed to 10, only 12% of pupae emerged for the period 31-60 days. However, the decrease of the temperature to 8°C yielded no emergence for the period 61-90 days. Our study provides useful information to better understand the population dynamics of overwintering T. absoluta, and to underpin the development of monitoring and control strategies for the pest.