Patients with chronic kidney disease (CKD) suffer persistent decreased kidney function. Previous study of protein hydrolysate of green pea (Pisum sativum) bromelain (PHGPB) has shown promising results as an antifibrotic in glucose-induced renal mesangial culture cells, by decreasing their TGF-β levels. To be effective, protein derived from PHGPB must provide adequate protein intake and reach the target organs. This paper presents a drug delivery system for the formulation of PHGPB using chitosan as polymeric nanoparticles. A PHGPB nano delivery system was synthesized by precipitation with fixed chitosan 0.1 wt.%, followed by a spray drying process at different aerosol flow rates of 1, 3, and 5 L/min. FTIR results showed that the PHGPB was entrapped in the chitosan polymer particles. Homogeneous size and spherical morphology of NDs were obtained for the chitosan-PHGPB with a flow rate of 1 L/min. Our in vivo study showed that the highest entrapment efficiency, solubility, and sustained release were achieved by the delivery system method at 1 L/min. It was concluded that the chitosan-PHGPB delivery system developed in this study improves pharmacokinetics compared to pure PHGPB.
Read full abstract