The exact formulae for the plastic and the elastic spin referred to the deformed configuration are derived, where the plastic spin is a function of the plastic strain rate and the elastic spin a function of the elastic strain rate. With these exact formulae we determine the macroscopic substructure spin that allows us to define the appropriate corotational rate for finite elastoplasticity.Plastic, elastic and substructure spin are considered and simplified for various sub-classes of restricted elastic-plastic strains. It is shown that for the special cases of rigid-plasticity and hypoelasticity the proposed corotational rate is identical with the Green-Naghdi rate, while the ZarembaJaumann rate yields a good approximation for moderately large strains.To compare our exact plastic spin formula with the constitutive assumption for the plastic spin introduced by Dafalias and others, we simplify our result for small elastic-moderate plastic strains and introduce a simplest evolution law for kinematic hardening leading to the Dafalias formula and to an exact determination of its unknown coefficient. It is also shown that contrary to statements in the literature the plastic spin is not zero for vanishing kinematic hardening.For isotropic-elastic material with induced plastic flow undergoing isotropic and kinematic hardening constitutive and evolution laws are proposed. Elastic and plastic Lagrangean and Eulerian logarithmic strain measures are introduced and their material time derivatives and corotational rates, respectively, are considered. Finally, the elastic-plastic tangent operator is derived.The presented theory is implemented in a solution algorithm and numerically applied to the simple shear problem for finite elastic-finite plastic strains as well as for sub-classes of restricted strains. The results are compared with those of the literature and with those obtained by using other corotational rates.
Read full abstract