This investigation sought to compare the abrasive wear rates of resin composites designed for posterior applications. Seventy-five specimens were fabricated with conventional hybrid (Charisma and Filtek Z250) or packable composites (Filtek P60, Solitaire II and Tetric Ceram HB), according to a randomized complete block design (n = 15). Specimens were finished and polished metallographically and subjected to abrasive wear which was performed under a normal load of 13N at a frequency of 2 Hz using a pneumatic device (MSM/Elquip) in the presence of a mucin-containing artificial saliva. Wear was quantified profilometrically in five different locations of each specimen after 1,000, 5,000, 10,000, 50,000 and after every each 50,000 through 250,000 cycles. A split-plot ANOVA showed a significant difference between the wear resistance of composites (alpha = 0.05). Tukey's test ascertained that while the composites Filtek Z250 and Charisma wore significantly less than any other of the materials tested, Tetric Ceram HB experienced the greatest wear rates. Filtek P60 and Solitaire II showed intermediate rates of material removal. The wear pattern of composites proved to be biphasic with the primary phase having the faster wear rate. In conclusion, packable resin composites may not have superior wear compared to conventional hybrid composites.