Soil cadmium (Cd) pollution poses a serious threat to both the productivity and quality of wheat. This study aimed to investigate the genotypic variation in grain Cd concentration in wheat through field and pot experiments. Among 273 wheat genotypes, a significant genotypic difference was found in grain Cd concentration, ranging from 0.01 to 0.14 mg kg−1. Two contrasting genotypes, X321 (a low grain Cd accumulator) and X128 (a high grain Cd accumulator), were selected for pot experiments. X321 exhibited a 17.9% greater reduction in yield and a 10.2% lower shoot-to-grain Cd translocation rate than X128 under Cd treatment. Grain Cd content showed a positive correlation with soil available Cd content and a negative correlation with Cu content. Soil catalase activity significantly decreased in X128 under Cd stress, whereas no difference was found in X321. The grains of X321 exhibited a more compact spatial distribution of starch grains and protein matrix than those of X128. Moreover, the size of A-type starch in X128 was larger than in X321. Meanwhile, X128 contained much B-type starch, with some surface pits observed on A-type granules under Cd stress. Cd treatment increased the abundance of rhizosphere microorganism communities, with Ellin6067 and Ramlibacter being enriched in X128 under Cd treatment, which might facilitate Cd uptake. The accumulation of Cd in grains demonstrated a strong positive correlation with the rhizosphere bacterial diversity (correlation coefficient = 0.78). These findings provide new insights into the basis of grain Cd accumulation in wheat and have potential implications for developing new verities with low Cd accumulation to ensure food safety and minimize human exposure.
Read full abstract