Facilitative interactions among species are key in plant communities. While experimental tests support the Stress Gradient Hypothesis (SGH) as an association between facilitation and stress, whether the shape of net effects along stress gradients can be predicted is controversial, with no available mathematical modelling approaches. We proposed a novel test, using a modification of the R* model to study how negative and positive partial effects of plant interactions in drylands combine along two common stress gradients. We modelled different interactions: competition for water and light, amelioration of soil infiltration and/or grazing protection, obtaining that intensity and importance of facilitation did not generally increase along stress gradients, being dependent on the interaction type. While along the water stress gradient net interactions became more positive, reaching a maximum and then waning again, various outcomes were observed along the grazing gradient. Shape variety was mainly driven by the various shapes of the partial positive effects. Under resource stress, additive interaction effects can be expected, whereas when including grazing, the effects were non-additive. In the context of the SGH, deconstructing the effect of positive and negative interaction in a pairwise mechanistic models of drylands does not show a unique shape along stress gradients.