This study investigated the hydrophobic-hydrophilic characteristics of zinc oxide (ZnO) nanorod coatings for potential biomedical applications. We examined the effects of different alignments of ZnO nanorods on the wetting and mechanical characteristics of the coatings. ZnO seed layers were prepared on stainless-steel plates using atomic layer deposition (ALD) at five different temperatures ranging from 50 to 250 °C. The ZnO nanorod coatings were then deposited on these seed layers through chemical bath deposition. The polycrystalline structure of the seed layers and the morphology of the nanorods were analyzed using grazing incidence angle x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical and wetting properties of the nanorod coatings were examined using nanoindentation and water-droplet tests. The seed layers produced at 50 and 250 °C showed stronger (0 0 2) peaks than the other layers. ZnO nanorods on these seed layers exhibited greater vertical orientation and lower water contact angles indicating a more hydrophilic surface. Additionally, vertically oriented nanorod coatings demonstrated greater elastic modulus and hardness than those of oblique nanorods. Our findings indicate that ALD technology can be used to control the spatial arrangement of ZnO nanorods and optimize the hydrophobic-hydrophilic and mechanical properties of coating surfaces.
Read full abstract