Annular lithography is a recently introduced, flexible technique that has been tailored to the fabrication of rotationally symmetric optical structures in the meso and micro range. The optical concept for the exposure tool is based on a combination of axicons with movable components that create a ring-shaped light distribution with variable diameter in the image plane. This contribution demonstrates for the first time the use of gray tone exposure in annular lithography to fabricate continuous relief structures, overcoming the previous limitation using binary structures. For the controlled exposure of the continuous relief structures, the sensitivity curve of the resist, the exposure dose decreasing with increasing ring diameter, and the exposure time have to be considered. A control and simulation tool is introduced to provide radius-dependent exposure data and, furthermore, to control and iteratively improve the fabricated structures. To demonstrate the gray tone capabilities, various diffractive elements as well as refractive spherical and aspherical elements with a maximum diameter of ~6 mm and a maximum height of 4 µm are shown as examples. Profile shape measurements of fabricated elements show good agreement with the expectations.
Read full abstract