Two single-nucleotide polymorphisms (SNPs) (rs4281084 and rs12155594) within the neuregulin-1 (NRG1) gene have been associated with psychosis transition. However, the neurobiological changes associated with these SNPs remain unclear. We aimed to determine what relationship these two SNPs have on lateral ventricular volume and white matter integrity, as abnormalities in these brain structures are some of the most consistent in schizophrenia. Structural (n = 370) and diffusion (n = 465) magnetic resonance imaging data were obtained from affected and unaffected individuals predominantly of European descent. The SNPs rs4281084, rs12155594, and their combined allelic load were examined for their effects on lateral ventricular volume, fractional anisotropy (FA) as well as axial (AD) and radial (RD) diffusivity. Additional exploratory analyses assessed NRG1 effects on gray matter volume, cortical thickness, and surface area throughout the brain. Individuals with a schizophrenia age of onset ⩽25 and a combined allelic load ⩾3 NRG1 risk alleles had significantly larger right (up to 50%, p adj = 0.01) and left (up to 45%, p adj = 0.05) lateral ventricle volumes compared with those with allelic loads of less than three. Furthermore, carriers of three or more risk alleles, regardless of age of onset and case status, had significantly reduced FA and elevated RD but stable AD in the frontal cortex compared with those carrying fewer than three risk alleles. Our findings build on a growing body of research supporting the functional importance of genetic variation within the NRG1 gene and complement previous findings implicating the rs4281084 and rs12155594 SNPs as markers for psychosis transition.