Attitude stability of spacecraft subjected to the gravity gradient torque in a central gravity field has been one of the most fundamental problems in space engineering since the beginning of the space age. Over the last two decades, the interest in asteroid missions for scientific exploration and near-Earth object hazard mitigation is increasing. In this paper, the problem of attitude stability is generalized to a rigid spacecraft on a stationary orbit around a uniformly-rotating asteroid. This generalized problem is studied via the linearized equations of motion, in which the harmonic coefficients \(C_{20}\) and \(C_{22}\) of the gravity field of the asteroid are considered. The necessary conditions of stability of this conservative system are investigated in detail with respect to three important parameters of the asteroid, which include the harmonic coefficients \(C_{20}\) and \(C_{22}\), as well as the ratio of the mean radius to the radius of the stationary orbit. We find that, due to the significantly non-spherical shape and the rapid rotation of the asteroid, the attitude stability domain is modified significantly in comparison with the classical stability domain predicted by the Beletskii–DeBra–Delp method on a circular orbit in a central gravity field. Especially, when the spacecraft is located on the intermediate-moment principal axis of the asteroid, the stability domain can be totally different from the classical stability domain. Our results are useful for the design of attitude control system in the future asteroid missions.
Read full abstract