We have intensively examined the dynamic behavior of flame front instability in a lean swirling premixed flame generated by a change in gravitational orientation [H. Gotoda, T. Miyano, and I. G. Shepherd, Phys. Rev. E 81, 026211 (2010)PLEEE81539-375510.1103/PhysRevE.81.026211] from the viewpoints of complex networks, symbolic dynamics, and statistical complexity. Here, we considered the permutation entropy in combination with the surrogate data method, the permutation spectrum test, and the multiscale complexity-entropy causality plane incorporating a scale-dependent approach, none of which have been considered in the study of flame front instabilities. Our results clearly show the possible presence of chaos in flame front dynamics induced by the coupling of swirl-buoyancy interaction in inverted gravity. The flame front dynamics also possesses a scale-free structure, which is reasonably shown by the probability distribution of the degree in ε-recurrence networks.
Read full abstract