ABSTRACT Interferometric gravitational-wave observatories have opened a new era in astronomy. The rich data produced by an international network enable detailed analysis of the curved space-time around black holes. With nearly 100 signals observed so far and thousands expected in the next decade, their population properties enable insights into stellar evolution and the expansion of our Universe. However, the detectors are afflicted by transient noise artefacts known as ‘glitches’ which contaminate the signals and bias inferences. Of the 90 signals detected to date, 18 were contaminated by glitches. This feasibility study explores a new approach to transient gravitational-wave data analysis using Gaussian processes, which model the underlying physics of the glitch-generating mechanism rather than the explicit realization of the glitch itself. We demonstrate that if the Gaussian process kernel function can adequately model the glitch morphology, we can recover the parameters of simulated signals. Moreover, we find that the Gaussian processes kernels used in this work are well suited to modelling long-duration glitches which are most challenging for existing glitch-mitigation approaches. Finally, we show how the time-domain nature of our approach enables a new class of time-domain tests of General Relativity, performing a re-analysis of the inspiral-merger-ringdown test on the first observed binary black hole merger. Our investigation demonstrates the feasibility of the Gaussian processes as an alternative to the traditional framework but does not yet establish them as a replacement. Therefore, we conclude with an outlook on the steps needed to realize the full potential of the Gaussian process approach.
Read full abstract