Wastewater irrigation is often practiced in arid regions, which can increase the chance of heavy metals contaminating the agricultural system. This contamination poses risks to both the environment and human health. This research looked into how cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn) move through a food chain involving soil, plants, and arthropods. The study was conducted in El-Gabal El-Asfar, Egypt, comparing treated and untreated wastewater irrigation areas. Six soil-irrigated sites and one reference site were sampled for soil, alfalfa (Medicago sativa), two grasshopper species (Aiolopus thalassinus and Calephorus compressicornis), and a wolf spider (Hogna ferox). The samples were analyzed for their heavy metal content. Metal concentrations in all components of the wastewater irrigated system were significantly higher compared to the reference site. The wolf spider and the soil contained the highest levels of Cd, Pb, and Cu, while the greatest concentrations of Zn were found in the spider and grasshoppers. Despite limited transfer from soil to plant, trace elements biomagnified within the terrestrial food chain, specifically from grasshoppers to wolf spiders. The correlation analysis of metal levels between soils, plants, and arthropods in the present study reflects its transfer across the trophic levels. It suggests that dietary intake is the main source of metal accumulation in arthropods. The present study, therefore, quite clearly indicated the possibility of heavy metal biomagnification in terrestrial food chains of wastewater-irrigated agroecosystems. Continuous monitoring and management of such systems are advocated to avoid environmental and public health risks.