Cogongrass (Imperata cylindrica) can be processed into a positive electrode as a battery component to generate electricity by utilizing its carbon element. This study used various activators, KOH and H3PO4, and characterized using XRD, FTIR, and SEM-EDX and electrical tests with electric conductivity analysis. The analysis results using XRD diffraction showed that when using both KOH and H3PO4 activators, Cogongrass carbon has graphite (C) and silicon (Si) crystals but at different peaks. The carbon has the same functional groups for both activators: OH-bending, C=C-bending, C-O-bending, and C=C-bending. Cogongrass carbon with KOH activator has a pore size of 235-980 nm with a percentage of carbon atoms of 71.29%, while with H3PO4 activator has a pore size of 110-960 nm with a higher percentage of carbon atoms of 75.04%. The elements contained in carbon are the same for both activators, namely carbon, oxygen, silicon, indium, potassium, calcium, iron, chlorine, phosphorus, magnesium, and sodium. EC analysis showed that carbon from Cogongrasss showed electric conductivity reaching 140 µs/cm at 60 minutes pyrolysis time.
Read full abstract