Abstract

We describe the development and demonstration of a high-repetition-rate-capable dual-channel (DC) x-ray spectrometer designed for high-intensity laser-plasma experiments (≥1×1021 W/cm2). The spectrometer, which operates at high repetition rates, is limited only by the refresh rate of targets and the camera's frame rate. It features two channels, each equipped with a flat highly oriented pyrolytic graphite (HOPG) crystal and a unique detector plane, allowing it to resolve two distinct x-ray bands: approximately 7-10 and 10-13keV. Each detector plate carrier holds two slots for active (scintillators) or passive (imaging plates) x-ray detectors. We present the design and testing of the HR-DC-HOPG using both the COMET laser (10J, 0.5ps shot/4min) at LLNL's Jupiter Laser Facility and the SCARLET laser (10J, 30fs shot/min) at Ohio State University. The results demonstrate the spectrometer's performance across various laser energies, target materials, pulse shapes, and detector types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.