This paper studies the free vibration and harmonic response of Functionally Graded Graphene/Epoxy composite plates, considering the First Order Shear Deformation Plate Theory. The weight fraction of graphene variation along the thickness direction with graphene homogeneous dispersed in a polymer matrix. The effective Young Modulus of the plate is predicted by a new micro-mechanical model. The model includes the aspect ratio and weight fraction of nanoplatelets embedded into the matrix. The modal and harmonic of Graphene/Epoxy plates are obtained by the Boundary Element Method formulation for composite plates. The Young modulus calculated from the proposed micro-mechanical model highly agrees with those obtained from experimental results reported in the literature. Results demonstrate a high correlation of the micromechanical model with experimental results and other analytical models. Graphene weight fraction and ratio aspect increase the effective Young modulus of the composite. Boundary Element results show high agreement with Finite Element solutions. Numerical results for modal and harmonic analysis show concentrating graphene near the top and bottom surfaces of the plate is the most effective way to reinforce the plate for increased natural frequencies. The results demonstrate the BEM formulation and micromechanical model can be used as reliable engineering tools for the vibrational analysis of functionally grade graphene composite plates.
Read full abstract