Abstract

This paper investigates the dispersion characteristics of elastic waves propagating along the thickness direction in functionally graded laminated phononic crystals (FGLPCs) containing novel auxetic metamaterials enabled by graphene origami that is created with the aid of hydrogenation. Both graphene weight fraction and hydrogen coverage which are the key parameters governing the auxetic property are nonuniformly distributed in unit cells of FGLPCs whose material properties are determined by genetic programming-assisted micromechanical models. The dispersion relations of elastic waves in the structure are obtained based on the state space approach and the method of reverberation-ray matrix. A comprehensive parametric study is conducted to discuss the effects of graphene origami weight fraction and hydrogen coverage on bulk waves in elastic solids made of the metamaterial and elastic waves in FGLPCs. It is found that introducing auxetic metamaterials into FGLPCs can effectively manipulate elastic waves. The graded distribution of weight fraction in FGLPCs can lead to bandgaps for both transverse and longitudinal waves, while a through-thickness graded pattern in hydrogen coverage can trigger broad bandgaps for longitudinal waves only with transverse waves nearly unchanged.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.