The anticipated large contribution of renewable energy resources to the sector of energy production strongly motivated the development of energy storage technologies, of which supercapacitors have drawn a lot of attention. In this work, Lanthanum-Strontium-Manganese-oxide (LSMO) perovskite nanoparticles, graphene oxide nanoribbons (GONRs), and LSMO-GONRs composite were synthesized and tested as electrode materials for supercapacitor applications. The LSMO was synthesized using the co-precipitation/calcination method, while the GONRs were synthesized using the oxidative unzipping of multi-walled carbon nanotubes. The physical/chemical structures were studied using XRD, FT-IR, SEM, TEM, SAED, and XPS. In 1 M KOH, the LSMO-GONRs electrode exhibited a specific capacitance of 490F/g compared to 342F/g and 294F/g for GONRs and LSMO electrodes, respectively, at 1 A/g, showcasing a performance that is not just superior but truly impressive, to the different types of perovskite/carbon-based material composites. The fabricated asymmetric SC device of LSMO-GONRs//GONRs exhibited a potential window of 1.7 V, a specific capacitance of 92.3F/g, an energy density of 38 Wh/kg, and a power density of 860 W/kg at 1 A/g. Moreover, the LSMO-GONRs//GONRs device showed excellent capacity retention and Coulombic efficiency after 10,000 cycles at 10 A/g, revealing the promising employment of LSMO-GONRs composite as a highly stable material for supercapacitor applications.
Read full abstract