Abstract

Joule and photothermal heating offer promising avenues for enhancing oil recovery, desorption, and reusability by reducing the viscosity of highly viscous oils, thereby facilitating their mobility on sorbent surface. This study developed a heatable reduced graphene oxide nanoribbon (r-GONR)-coated polyvinylidene fluoride (PVDF) oil sorbent to address these viscosity challenges. The application of heating increased oil desorption by approximately 50%, significantly outperforming the conventional PVDF mat. The r-GONR sorbent, leveraging the photothermal effect, demonstrated exceptional reusability, maintaining 40% oil desorption efficiency up to the 10th cycle. Furthermore, its high oil desorption and reusability translated into considerable economic benefits, with a revenue potential of 6.4–29.0 $/m2, alongside significant environmental impact reduction. This study introduces a novel, sustainable approach to oil desorption and reuse, underscoring the practical applications of heatable materials in enhancing oil recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.