Machine learning offers great promise for fast and accurate binding affinity predictions. However, current models lack robust evaluation and fail on tasks encountered in (hit-to-) lead optimisation, such as ranking the binding affinity of a congeneric series of ligands, thereby limiting their application in drug discovery. Here, we address these issues by first introducing a novel attention-based graph neural network model called AEV-PLIG (atomic environment vector–protein ligand interaction graph). Second, we introduce a new and more realistic out-of-distribution test set called the OOD Test. We benchmark our model on this set, CASF-2016, and a test set used for free energy perturbation (FEP) calculations, that not only highlights the competitive performance of AEV-PLIG, but provides a realistic assessment of machine learning models with rigorous physics-based approaches. Moreover, we demonstrate how leveraging augmented data (generated using template-based modelling or molecular docking) can significantly improve binding affinity prediction correlation and ranking on the FEP benchmark (weighted mean PCC and Kendall’s τ increases from 0.41 and 0.26 to 0.59 and 0.42). These strategies together are closing the performance gap with FEP calculations (FEP+ achieves weighted mean PCC and Kendall’s τ of 0.68 and 0.49 on the FEP benchmark) while being ~400,000 times faster.
Read full abstract