The Pearl River and its estuary are highly exposed to anthropogenic disturbance. Because bacterial communities play an indispensable role in aquatic ecosystems, there has been an increased research focus on the statuses of these communities under human-induced perturbations. This study investigated the composition, diversity, and structure of bacterial communities across 29 sites from the Guangzhou section of the Pearl River (GZ) to the Pearl River Estuary (PRE) using 16S rRNA gene amplicons. The results revealed similar dominant phyla of bacteria in both GZ and PRE, as well as significant differences in bacterial community composition and diversity between the two sections. Proteobacteria and Cyanobacteria were identified as the primary drivers of compositional differences between GZ and PRE. The Cyanobacteria Dolichospermum_NIES41 and Cuspidothrix issatschenkoi were only present in GZ, whereas the marine Gram-negative bacteria of Porticoccus litoralis and Thalassolituus oleivorans were unique to PRE. Bacterial community composition and diversity exhibit both similarities and differences between GZ and PRE; Proteobacteria and Cyanobacteria are key factors underlying these variations. Bacterial communities in both GZ and PRE are strongly influenced by human activities, and salinity is an important factor in controlling their differences. This study provides a comprehensive analysis of the bacterial communities in GZ and PRE, establishing a foundation for better management of aquatic ecosystems impacted by anthropogenic activities.
Read full abstract