Curvature emerges as a fundamental membrane characteristic crucial for diverse biological processes, including vesicle formation, cell signaling, and membrane trafficking. Increasingly valuable insights into atomistic details governing curvature-dependent membrane properties are provided by computer simulations. Nevertheless, the underlying force field models are conventionally calibrated and tested in relation to experimentally derived parameters of planar bilayers, thereby leaving uncertainties concerning their consistency in reproducing curved lipid systems. In this study we compare the depiction of buckled phosphatidylcholine (POPC) and POPC-cholesterol membranes by four popular force field models. Aside from agreement with respect to general trends in curvature dependence of a number of parameters, we observe a few qualitative differences. Among the most prominent ones is the difference between atomistic and coarse grained force fields in their representation of relative compressibility of the polar headgroup region and hydrophobic lipid core. Through a number of downstream effects, this discrepancy can influence the way in which curvature modulates the behavior of membrane bound proteins depending on the adopted simulation model.
Read full abstract