The oxygen reduction reaction (ORR) is a critical process that limits the efficiency of fuel cells and metal-air batteries due to its slow kinetics, even when catalyzed by platinum (Pt). To reduce Pt usage, enhancing both the specific activity and electrochemically active surface area (ECSA) of Pt catalysts is essential. Here, ultrafine, grain boundary (GB)-rich Pt nanoparticle assemblies are proposed as efficient ORR catalysts. These nanowires offer a large ECSA and a high density of concave GB sites, which improve specific activity. Atoms at these GB sites exhibit increased coordination and lattice distortion, leading to a favorable reduction in oxygen binding energy and enhanced ORR performance. Furthermore, boron segregation stabilizes these GBs, preserving active sites during catalysis. The resulting boron-stabilized Pt nanoassemblies demonstrate ORR specific and mass activities of 9.18 mA cm-2 and 6.40 A mg-1 Pt (at 0.9 V vs. RHE), surpassing commercial Pt/C catalysts by over 35-fold, with minimal degradation after 60000 potential cycles. This approach offers a versatile platform for optimizing the catalytic performance of a wide range of nanoparticle systems.
Read full abstract