Abstract
Embrittling potency is a thermodynamic metric that assesses the influence of solute segregation to a grain boundary (GB) on intergranular fracture. Historically, authors of studies have reported embrittling potency as a single scalar value, assuming a single segregation site of importance at a GB and a particular cleavage plane. However, the topography of intergranular fracture surfaces is not generally known a priori. Accordingly, in this paper, we present a statistical ensemble approach to compute embrittling potency, where many free surface (FS) permutations are systematically considered to model fracture of a GB. The result is a statistical description of the thermodynamics of GB embrittlement. As a specific example, embrittling potency distributions are presented for Cr segregation to sites at two Ni $\ensuremath{\langle}111\ensuremath{\rangle}$ symmetric tilt GBs using atomistic simulations. We show that the average embrittling potency for a particular GB site, considering an ensemble of FS permutations, is not equal to the embrittling potency computed using the lowest energy pair of FSs. A mean GB embrittlement is proposed, considering both the likelihood of formation of a particular FS and the probability of solute occupancy at each GB site, to compare the relative embrittling behavior of two distinct GBs.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have