This work aims to synthesize a novel itaconic acid (IA) grafted carboxymethyl chitosan (PICMCS), and further fabricate its nanoparticles for potential biomedical applications. First, PICMCS was prepared via free-radical polymerization of IA monomer, in the presence of ammonium persulfate as an initiator and nitrogen as a protector. Its chemical structure was confirmed by FTIR and 1H NMR. The IA substitution degree calculated by elemental analysis data was 1.85, implying that IA was successfully grafted to carboxymethyl chitosan (CMCS). XRD and TGA patterns illustrated its well-defined crystallinity and thermostability. Second, PICMCS nanoparticles were fabricated by electrostatic attraction between carboxyl and amino groups in the absence of any additional agent, which were of obvious core-shell structures with an average particle size of 144nm and a polydispersity index of 0.11. PICMCS nanoparticles exhibited excellent physical stability after storage at 25°C for 30days, without any aggregation. PICMCS nanoparticles with high negative surface charge also indicated the good stability, especially in neutral or alkaline media. Additionally, the cytotoxicity experiments showed that either PICMCS or its nanoparticles had better cytocompatibility toward L929 cells than CMCS. These findings above suggested that PICMCS was a kind of promising material for preparing nanoparticles used in biomedical field.
Read full abstract