There is a close physiological connection between swallowing and the temporomandibular joint (TMJ). However, a shortage of quantitative research on the biomechanical behavior of the TMJ during swallowing exists. The purpose of this study was to reconstruct the movement of the temporomandibular joint (TMJ) based on in vivo experiment and analyze the biomechanical responses during swallowing in healthy adults to investigate the role of the TMJ in swallowing. Motion capture of swallowing, computed tomography (CT), and magnet resonance images (MRI) were performed on six healthy subjects. The movements of the TMJ during swallowing were reconstructed from the motion capture data. The three-dimensional finite element model was constructed. The dynamic finite element analysis of the swallowing process was performed based on the motion data. The range of condylar displacement was within 1 mm in all subjects. The left and right condyle movements were asymmetrical in two-thirds of the subjects. The peak stresses of the discs were relatively low, with a maximum of 0.11 MPa. During swallowing, the condylar displacement showed two trends: slow retraction and slow extension. The tendency to extend could lead to a gradual increase in stress on the disc.