Electric field-assisted separation is considered one of the most effective ways of dehydrating water-in-oil emulsions. In the uniform electric field usually used in electrodehydrators, electrocoalescence leads to droplet enlargement, thus accelerating their gravitational settling. Meanwhile, using a nonuniform field is expected to provide an additional tool for phase spatial separation due to dielectrophoresis while keeping the conditions favorable for electrocoalescence. This study aims to investigate experimentally the dynamics of water-in-oil emulsion in a nonuniform electric field and the efficiency of its separation due to the dielectrophoretic effect. A high-frequency field and emulsions with zero-density contrast were used allowing us to study the action of the dielectrophoretic force in the absence of electrokinetic phenomena and gravitational settling. We found that droplets always move towards the electric field strength gradient, eventually accumulating at the internal electrode. We demonstrate that the separation efficiency increases as the average droplet size, the voltage, the dispersion medium permittivity, and the initial droplet concentration increase. In the latter case the separation enhancement is due primarily to droplet coalescence, the rate of which increases appreciably with increasing concentration. We demonstrate that all the experimental results can be combined into unified dependence based on a simple physical model.
Read full abstract