Heart failure is a leading cause of premature death, especially among individuals with a sedentary lifestyle. Early and accurate detection is essential to prevent the progression of this situation. However, many existing prediction systems failed to detect early and accurately, also taking more time to detect. To address these issues, we propose an advanced heart failure detection model that combines one-dimensional chaotic maps and a Gradient-Based Optimizer (GBO) called Chaotic Gradient-Based Optimizer (CGBO). This approach improves feature selection by effectively selecting the most crucial features related to the risk of heart failure. Additionally, we introduce the Fuzzy Temporal Optimized Convolutional Neural Network (FTOCNN) classifier that incorporates CGBO and fuzzy temporal rules to enhance detection accuracy. The proposed model is evaluated using the UCI heart dataset and Electronic Health Records (EHRs) and its performance is assessed through statistical measures, classification metrics, and a Wilcoxon rank-sum p-test. Furthermore, a tenfold cross-validation process ensures a comprehensive evaluation and the proposed method outperforms different Machine Learning (ML) / Deep Learning (DL) classifiers. The experimental findings reveal that CGBO significantly improves the predictive performance of the FTOCNN classifier by achieving 94% accuracy in EHR and enhances the reliability of heart failure detection compared to existing systems.
Read full abstract