Ionospheric delay has a severe effect on reducing the accuracy of positioning and navigation of single-frequency receivers. Therefore, it is necessary to construct a precise regional ionospheric model for real-time Global Navigation Satellite System (GNSS) applications. The total electron contents (TECs) of 839 GNSS stations affiliated with the GPS Earth Observation Network were used to build a Japanese ionospheric model (JIM) based on a multi-layer perceptron neural network. During quiet space conditions, the correlation coefficient between the targets and the predictions of the JIM was about 0.98, and the root-mean square error (RMSE) of TEC residuals was ~1.5TECU, while under severe space events, the correlation coefficient increased to 0.99, and the corresponding RMSE dropped to 0.96 TECU. Moreover, the JIM model successfully reconstructed the two-dimensional (time vs latitude) TEC maps, and the TEC maps had evident hourly and seasonal variations. Most of TEC residuals accumulated between universal time 01–06 with an averaged magnitude of 1-2TECU. Furthermore, the JIM model had a perfect prediction performance under various kinds of complex space environments. In the quiet days, the prediction accuracy of the JIM was nearly equal to the global ionosphere map (GIM), and in some moments, the JIM was more competitive than the GIM. In the disturbed days, the RMSEs of TEC residuals were proportional to the solar wind speed and were inversely proportional to the geomagnetic Dst value. The maximum RMSE of the JIM was lower than 2TECU, while the corresponding RMSEs for the IRI and TIE-GCM exceeded 5TECU.
Read full abstract