Patients with polypoidal choroidal vasculopathy (PCV) exhibit variability in response to anti-VEGF therapy. This study aimed to analyse the aqueous humour proteomic profiles of PCV patients and provide preliminary insights for the identification of biomarkers associated with anti-VEGF drug responsiveness. PCV patients who were treatment-naïve or untreated for more than 3 months were prospectively recruited from two hospitals in Beijing and Tianjin. Based on the relative changes in central macular thickness (ΔCMT/baseline-CMT) before and after anti-VEGF treatment, the PCV patients were divided into a good response (GR) group (≤-25%) and a poor response (PR) group (>-25%). Aqueous humour proteomics was performed by the Data-independent Acquisition-Mass Spectrometry (DIA-MS) method, and differentially expressed proteins (DEPs) analysis between the different PCV groups and the control group was conducted. Key DEPs were selected for preliminary validation in the aqueous humour using the Luminex method retrospectively. A total of 31 PCV patients (31 eyes) were included, 13 in the GR group and 18 in the PR group. A total of 414 DEPs were identified, including 36 significantly upregulated proteins, such as G protein regulatory factor 10 (RGS10), podocin (PODN) and epidermal growth factor (EGF), and 32 downregulated proteins, including RAB11FIP4 (Rab11 family-interacting protein 4), α-synuclein (SNCA), haemoglobin subunit δ (HBD) and interleukin 6 (IL6). Compared to the cataract control group (10 eyes), 134 proteins were significantly upregulated, and 72 were downregulated. KEGG pathway enrichment analysis revealed that the GR and PR groups differ in terms of cell communication, and cell signal transduction. Protein-protein interaction analysis revealed interactions between EGF and various DEPs. Validation of aqueous humour proteins using the Luminex method revealed that changes in the levels of EGF were associated with the anti-VEGF treatment response in PCV patients. PCV patients with good or poor anti-VEGF responses exhibit distinct aqueous humour proteomic profiles. Aqueous EGF may serve as a biomarker for the 'precise treatment' of PCV.