In the paper, the parallelization of multi-grid methods for solving second-order elliptic boundary value problems in two-dimensional domains is discussed. The parallelization strategy is based on a non-overlapping domain decomposition data structure such that the algorithm is well-suited for an implementation on a parallel machine with MIMD architecture. For getting an algorithm with a good parallel performance it is necessary to have as few communication as possible. In our implementation, communication is only needed within the smoothing procedures and the coarse-grid solver. The interpolation and restriction procedures can be performed without any communication. New variants of smoothers of Gauss-Seidel type having the same communication cost as Jacobi smoothers are presented. For solving the coarse-grid systems iterative methods are proposed that are applied to the corresponding Schur complement system. A numerical example, namely a plane linear elasticity problem, demonstrates the efficiency of the parallel multi-grid algorithm.