Machine Learning (ML) techniques require novel computer programming skills along with clinical domain knowledge to produce a useful model. We demonstrate the use of a cloud-based ML tool that does not require any programming expertise to develop, validate and deploy a prognostic model for Intracerebral Haemorrhage (ICH). The data of patients admitted with Spontaneous Intracerebral haemorrhage from January 2015 to December 2019 was accessed from our prospectively maintained hospital stroke registry. 80% of the dataset was used for training, 10% for validation, and 10% for testing. Seventeen input variables were used to predict the dichotomized outcomes (Good outcome mRS 0–3/ Bad outcome mRS 4–6), using machine learning (ML) and logistic regression (LR) models. The two different approaches were evaluated using Area Under the Curve (AUC) for Receiver Operating Characteristic (ROC), Precision recall and accuracy. Our data set comprised of a cohort of 1000 patients. The data was split 8:1 for training & testing respectively. The AUC ROC of the ML model was 0.86 with an accuracy of 75.7%. With LR AUC ROC was 0.74 with an accuracy of 73.8%. Feature importance chart showed that Glasgow coma score (GCS) at presentation had the highest relative importance, followed by hematoma volume and age in both approaches. Machine learning models perform better when compared to logistic regression. Models can be developed by clinicians possessing domain expertise and no programming experience using cloud based tools. The models so developed lend themselves to be incorporated into clinical workflow.
Read full abstract