The formation of dual-layer asymmetric porous structures in surfactant-based systems is significantly influenced by emulsions. Surfactants self-assemble to alter the conformational arrangement of polysaccharides, while gravity disrupts the initial uniformity of the established equilibrium droplet concentration gradient in the emulsion, thus achieving delamination. Specifically, high-speed rotation and non-instantaneous freezing allow the gelatin solution to form two different states of foam layers. The integrated dual-layer asymmetric porous structure, composed of polysaccharides and tannic acid, is constructed with gelatin as a skeleton and surfactant. This innovative approach eliminates the need to consider the toxicity of chemically synthesized surfactants and expands the concept of gelatin utilization. This intriguing structure exhibits a variety of desirable characteristics within 30 days (e.g., tailorable performance, ultrarapid antioxidant activity, efficient antibacterial activity, low differential blood clotting index, and good hemocompatibility and cytocompatibility), suggesting its potential as a valuable reference for applying hierarchical porous structures, thereby offering more formulation flexibility for biomaterials with adjustable properties.
Read full abstract