Diets high in saturated fatty acids are associated with obesity and infertility. Palmitate, the most prevalent circulating saturated fatty acid, is sensed by hypothalamic neurons, contributing to homeostatic dysregulation. Notably, palmitate elevates the mRNA levels of gonadotropin-releasing hormone (Gnrh) mRNA and its activating transcription factor, GATA binding protein 4 (Gata4). GATA4 is essential for basal Gnrh expression by binding to its enhancer region, with Oct-1 (Oct1) and CEBP-β (Cebpb) playing regulatory roles. The pre- and post-transcriptional control of Gnrh by palmitate have not been investigated. Given the ability of palmitate to alter microRNAs (miRNAs), we hypothesized that palmitate-mediated dysregulation of Gnrh mRNA involves specific miRNAs. In the mHypoA-GnRH/GFP neurons, palmitate significantly downregulated six miRNAs (miR-125a, miR-181b, miR-340, miR-351, miR-466c and miR-503), and the repression was attenuated by co-treatment with 100 μM of oleate. Subsequent mimic transfections revealed that miR-466c significantly downregulates Gnrh, Gata4, and Chop mRNA and increases Per2, whereas miR-340 upregulates Gnrh, Gata4, Oct1, Cebpb, and Per2 mRNA. Our findings suggest that palmitate may indirectly regulate Gnrh at both the pre- and post-transcriptional levels by altering miR-466c and miR-340, which in turn regulate transcription factor expression levels. In summary, palmitate-mediated dysregulation of Gnrh and, consequently, reproductive function involves parallel transcriptional mechanisms.
Read full abstract