Reduced prey availability has emerged as a primary hypothesis to explain population constraints on wading birds in numerous wetlands around the world. However, there is almost no understanding of which component of prey availability (i.e., prey density or vulnerability of prey to capture) is affecting populations and whether the relative effects of each component differ among species. In this study, I manipulated prey density and water depth (i.e., prey availability) in 12 0.2-ha ponds to determine their relative effects on the numeric response of eight species of free-ranging wading birds (White Ibis, Eudocimus albus; Wood Stork, Mycteria americana; Snowy Egret, Egretta thula; Glossy Ibis, Plegadis falcinellus; Great Egret, Ardea alba; Tricolored Heron, Egretta tricolor; Great Blue Heron, Ardea herodias; and Little Blue Heron, Egretta caerulea). The experiment was conducted in a constructed wetland adjacent to, and west of, the northern tip of the remnant Everglades, in Palm Beach County, Florida, USA. Each pond was set to a water depth of 10 cm, 19 cm, or 28 cm, and was stocked with golden shiners (Notemigonus crysoleucas) at a density of either 3 fish/m2 or 10 fish/m2. Total bird use (all treatments pooled) increased from day 1 (day after stocking) to day 6, stabilized for several days at ∼280 birds, and then decreased until day 16, when bird use nearly ceased. Fish were depleted most rapidly in the shallow treatment and least rapidly in the deep treatment. The giving-up-density (GUD) of prey increased with increasing water depth. There was no significant difference among species in the slope of that relationship; however, a visual inspection of the data showed that differences in GUDs were becoming more apparent in the deepest treatment. At that depth, the White Ibis, Wood Stork, and Snowy Egret had higher GUDs than did the Glossy Ibis, Great Egret, Tricolored Heron, Great Blue Heron, and Little Blue Heron. Also, the first three species were affected significantly by both prey density and water depth, whereas the latter five species showed a decidedly weaker response to one or the other component of prey availability. The first three species were more abundant in the shallow treatments and the high prey density treatments, and they abandoned the study site before other species reached their maximum density. The feeding strategy of the first group appeared to be one of searching for new high-quality food patches rather than staying and exploiting food patches that were declining in quality. Species that employed a searching strategy also have shown the most severe population declines, suggesting that factors affecting bird density at feeding sites may also have affected population size.
Read full abstract