In this work, an integrated Game Theory (GT) approach is developed for the coordination of multi-enterprise Supply Chains (SCs) in a competitive uncertain environment. The conflicting goals of the different participants are solved through coordination contracts using a non-cooperative non-zero-sum Stackelberg game under the leadership of the manufacturer. The Stackelberg payoff matrix is built under the nominal conditions, and then evaluated under different probable uncertain scenarios using a Monte-Carlo simulation. The competition between the Stackelberg game players and the third parties is solved through a Nash Equilibrium game. A novel way to analyze the game outcome is proposed based on a win–win Stackelberg set of “Pareto-frontiers”. The benefits of the resulting MINLP tactical models are illustrated by a case study with different vendors around a client SC. The results show that the coordinated decisions lead to higher expected payoffs compared to the standalone case, while also leading to uncertainty reduction.