Existing evidence indicates the importance of observing correct, normal actions on the motor cortical activities. However, the exact neurophysiological mechanisms, particularly in the somatosensory system, remain unclear. This study aimed to elucidate the effects of observing normal and abnormal hand movements on the contralateral primary somatosensory (cSI), contralateral (cSII) and ipsilateral (iSII) secondary somatosensory activities. Experiment I was designed to investigate the effects of motor outputs on the somatosensory processing, in which subjects were instructed to relax or manipulate a small cube. Experiment II was tailored to examine the somatosensory responses to the observation of normal (Normal) and abnormal (Abnormal) hand movements. The subjects received electrical stimulation to right median nerve and magnetoencephalography (MEG) recordings during the whole experimental period. Regional cortical activation and functional connectivity were analyzed. Compared to the resting condition, a reduction in cSI and an enhancement of SII activation was found when subjects manipulated a cube, suggesting the motor outputs have an influence on the somatosensory responses. Further investigation of the effects of observing different hand movements showed that cSII activity was significantly stronger in the Normal than Abnormal condition. Moreover, compared with Abnormal condition, a higher cortical coherence of cSI-iSII at theta bands and cSII-iSII at beta bands was found in Normal condition. Conclusively, the present results suggest stronger activation and enhanced functional connectivity within the somatosensory system during the observation of normal than abnormal hand movements. These findings also highlight the importance of viewing normal, correct hands movements in the stroke rehabilitation.
Read full abstract