Gonadotropin-releasing hormone (GnRH) plays a pivotal role in reproductive regulation in vertebrates. However, GnRH was rarely isolated and its function remains poorly characterized in invertebrates. The existence of GnRH in ecdysozoa has been controversial for a long. Here, we isolated and identified two GnRH-like peptides from brain tissues in Eriocheir sinensis. Immunolocalization showed that the presence of EsGnRH-like peptide in brain, ovary and hepatopancreas. Synthetic EsGnRH-like peptides can induce germinal vesicle breakdown (GVBD) of oocyte. Similar to vertebrates, ovarian transcriptomic analysis revealed a GnRH signaling pathway in the crab, in which most genes exhibited dramatically high expression at GVBD. RNAi knockdown of EsGnRHR suppressed the expression of most genes in the pathway. Co-transfection of the expression plasmid for EsGnRHR with reporter plasmid bearing CRE-luc or SRE-luc response element into 293T cells showed that EsGnRHR transduces its signal via cAMP and Ca2+ signaling transduction pathways. In vitro incubation of the crab oocyte with EsGnRH-like peptide confirmed the cAMP-PKA cascade and Ca2+ mobilization signaling cascade but lack of a PKC cascade. Our data present the first direct evidence of the existence of GnRH-like peptides in the crab and demonstrated its conserved role in the oocyte meiotic maturation as a primitive neurohormone.