Sensitive High-Resolution Ion Microprobe (SHRIMP) U–Th–Pb isotopic data of detrital zircons from mature, quartz-rich meta-sandstones are used to constrain possible tectonic affinities and source regions of the rhythmically layered and graded-bedded series in the Yeoncheon Complex (Imjingang Belt) and the correlative Taean Formation. These metamorphic marine turbidite sequences presently occur along the Paleoproterozoic (1.93–1.83Ga) Gyeonggi Massif, central Korea’s main high-grade metamorphic gneiss terrane. Yet, detrital zircons yielded highly similar multimodal age spectra with peaks that do not match the age repartition in these basement rocks, as late (1.9–1.8Ga) and earliest (∼2.5Ga) Paleoproterozoic detrital modes are subordinate but, in contrast, Paleozoic (440–425Ma) and Neoproterozoic (980–920Ma) spikes are prominent, yet the basement essentially lacks lithologies with such ages. The youngest concordant zircon ages in each sample are: 378, 394 and 423Ma. The maturity of the meta-sandstones and the general roundness of zircons of magmatic signature, irrespective of their age, suggest that sediments underwent considerable transport from source to sink, and possibly important weathering and recycling, which may have filtered out irradiation-weakened metamorphic zircon grains. In combination with these isotopic data, presence of a low-angle ductile fault contact between the Yeoncheon Complex and the Taean Formation and the underlying mylonitized Precambrian basement implies that they are in tectonic contact and do not have a stratigraphic relationship, as often assumed. Consequently, in all likelihood, both meta-sedimentary formations: (1) are at least of early Late Devonian age, (2) received much of their detritus from distant (reworked) Silurian–Devonian and Early Neoproterozoic magmatic sources, not present in the Gyeonggi Massif, (3) and not from Paleoproterozoic crystalline rocks of this massif, or other Korean Precambrian basement terranes, and (4) should be viewed as independent tectonic units that had sources not exposed in Korea.A thorough literature review reveals that the Yeoncheon Complex and the Taean Formation were potentially sourced from the Liuling, Nanwan and Foziling groups in the Qinling–Dabie Belt, which all show very similar detrital zircon age spectra. These immature middle–late Devonian sandstones were deposited in a pro-foreland basin formed as a result of the aborted subduction of the South Qinling Terrane below the North Qinling Terrane, which was uplifted and eroded during post-collision isostatic rebound. The submarine fans where the mature distal turbiditic Yeoncheon and Taean sandstones were deposited may have constituted the eastern terminal part of a routing system originating in the uplifted and eroded middle Paleozoic Qinling Belt and adjacent part of the foreland basin.
Read full abstract