Ethnopharmacological relevanceXiebai San (XBS), a classic Chinese prescription, has been used for the clinical treatment of pneumonia-related diseases for thousands of years. However, the anti-pneumonia pharmacodynamic material basis of XBS and its underlying mechanisms remain unclear. Aim of the studyThis study aimed to comprehensively investigate and verify the anti-pneumonia pharmacodynamic material basis and mechanisms of XBS. Materials and methodsThis study explored the anti-pneumonia activity and key pneumonia targets of XBS in lipopolysaccharide (LPS)-induced zebrafish and RAW264.7 cells in vivo and in vitro through transcriptomics, western blotting, and reverse transcription–quantitative polymerase chain reaction (RT–qPCR). The chemical fingerprint of XBS was established using high-performance liquid chromatography, and the similarities and areas of characteristic peaks of 15 batches of XBS were analyzed. Based on the spectrum–efficacy relationship, the potential anti-inflammatory components were screened according to their peak areas and efficacy using principal component analysis (PCA), bivariate correlation, and partial least squares regression analysis. Active components that bind to core targets were further screened based on surface plasmon resonance (SPR). The binding mode of proteins and components was simulated via molecular docking, which enabled the identification of the primary active components of XBS, thereby elucidating its anti-pneumonia properties. Finally, the anti-inflammatory activities of these components were verified in vitro. ResultsXBS decreased neutrophil aggregation in zebrafish and nitric oxide (NO) secretion in RAW264.7 cells as well as suppressed the release of downstream inflammatory cytokines such as iNOS, TNF-α, IL-1β, IL-18, and CXCL10 related to TNF and JAK–STAT signaling pathways. The phosphorylation of IκBα, Akt, and Stat3 was alleviated after XBS in cells. The fingerprint similarities of 15 batches of XBS ranged from 0.381 to 0.994, with a large difference. A total of 15 characteristic peaks were identified, and the relative standard deviation of their peak areas ranged from 24.1% to 70.7%. The results of in vitro anti-inflammatory activities of 15 batches of XBS showed that all samples inhibited the expression levels of NO and nine inflammatory markers. The anti-inflammatory index of 15 batches of XBS was determined to be 0.69–0.96 based on transformation of the anti-inflammatory rate and composite index method via PCA. The spectrum–efficacy relationship model of 15 characteristic peak areas and the anti-inflammatory index showed that 7 main potential active components were related to the anti-inflammatory activity of XBS. Moreover, four components (mulberroside A, isoquercitrin, liquiritigenin, and glycyrrhizic acid) screened based on SPR had different affinities toward TNFR1, Akt1, and Stat3 proteins, and the binding modes were elucidated via molecular docking. Finally, in LPS-induced RAW264.7 cells, all four active components (at a concentration of 60 μM) significantly inhibited the expression levels of NO and inflammatory markers. ConclusionsBased on the comprehensive strategy of spectrum–efficacy relationship and SPR, mulberroside A, isoquercitrin, liquiritigenin, and glycyrrhizic acid were identified as the primary pharmacodynamic active components involved in the anti-pneumonia activity of XBS and were found to intervene in TNF and JAK–STAT signaling pathways.
Read full abstract