Abstract Background: Glycosylation is one of the most abundant post-translational modifications, and is involved in protein structure formation and protein-protein interactions. Aberrant glycosylation profiles are often observed on plasma proteins from patients with inflammatory diseases. Increased levels of non-galactosylated glycans have been reported on serum IgGs of HIV-infected patients. We investigated the effects of HIV infection on protein glycosylation by N-glycomic profiling of plasma and plasma IgG. Methods: We obtained plasma samples of 22 HIV infected patients (11 therapy-naïve, 11 receiving anti-retroviral therapy) and 11 HIV-negative controls. First, a nano-LC-TOF-MS strategy was employed for the evaluation of plasma N-glycan profiles in each of the samples. Then, a UPLC-QQQ-MS method was used to evaluate the IgG specific glycosylation patterns. N-glycan peak integrals were used for biostatistical analysis. Results and conclusion: Several neutral, fucosylated and sialylated glycan compositions as well as high mannose type glycans in plasma samples were significantly altered in therapy-naïve HIV infected patients compared to controls. Moreover, galactose-deficient glycans were increased on the IgG in these patients, independent of IgG subclass. Interestingly, these effects were largely reduced in HIV infected patients receiving therapy. These results suggest an important role for protein glycosylation in immune dysfunction that is driven by active HIV infection.