While the equilibrium assumption and the validity of using total measured concentrations for near equilibrium indicator reactions have been widely tested in liver, these have not been systematically evaluated in skeletal muscle. Vascularly isolated dog gracilis muscles were stimulated via the nerve at 4 Hz, and tissue was sampled by quick freezing at rest and after 10, 15, 30, 60, and 180 s of stimulation or after stimulation in the presence of glycolytic blockade by iodoacetate. Phosphocreatine, creatine, and several glycolytic intermediates were measured in tissue extracts. The in vivo mass action ratios for triosephosphate isomerase and aldolase were evaluated relative to substrate concentrations and compared with equilibrium constants determined in vitro. Although there was evidence of substrate binding at low substrate levels for the triosephosphate isomerase reaction, the in vivo mass action ratios for both reactions stabilized at a constant value at moderate substrate levels and in glycolytically blocked muscles. It was concluded that both enzymes are in apparent equilibrium in vivo, but the equilibrium constants are lower than those determined in vitro. The mass action ratios of the combined creatine kinase, lactate dehydrogenase, glyceraldehyde-phosphate dehydrogenase and phosphoglycerate kinase reactions were determined for resting muscles. These reactions are also at equilibrium and the equilibrium constants are consistent with in vitro values.
Read full abstract